| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /* | ||
| 2 | * Matrix, MatrixView, ConstMatrixView classes wrap the gsl matrix routines; | ||
| 3 | * "views" mimic the semantic of C++ references: any operation performed | ||
| 4 | * on a "view" is actually performed on the "viewed object" | ||
| 5 | * | ||
| 6 | * Authors: | ||
| 7 | * Marco Cecchetti <mrcekets at gmail.com> | ||
| 8 | * | ||
| 9 | * Copyright 2008 authors | ||
| 10 | * | ||
| 11 | * This library is free software; you can redistribute it and/or | ||
| 12 | * modify it either under the terms of the GNU Lesser General Public | ||
| 13 | * License version 2.1 as published by the Free Software Foundation | ||
| 14 | * (the "LGPL") or, at your option, under the terms of the Mozilla | ||
| 15 | * Public License Version 1.1 (the "MPL"). If you do not alter this | ||
| 16 | * notice, a recipient may use your version of this file under either | ||
| 17 | * the MPL or the LGPL. | ||
| 18 | * | ||
| 19 | * You should have received a copy of the LGPL along with this library | ||
| 20 | * in the file COPYING-LGPL-2.1; if not, write to the Free Software | ||
| 21 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
| 22 | * You should have received a copy of the MPL along with this library | ||
| 23 | * in the file COPYING-MPL-1.1 | ||
| 24 | * | ||
| 25 | * The contents of this file are subject to the Mozilla Public License | ||
| 26 | * Version 1.1 (the "License"); you may not use this file except in | ||
| 27 | * compliance with the License. You may obtain a copy of the License at | ||
| 28 | * http://www.mozilla.org/MPL/ | ||
| 29 | * | ||
| 30 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY | ||
| 31 | * OF ANY KIND, either express or implied. See the LGPL or the MPL for | ||
| 32 | * the specific language governing rights and limitations. | ||
| 33 | */ | ||
| 34 | |||
| 35 | |||
| 36 | #include <2geom/numeric/matrix.h> | ||
| 37 | #include <2geom/numeric/vector.h> | ||
| 38 | |||
| 39 | |||
| 40 | namespace Geom { namespace NL { | ||
| 41 | |||
| 42 | ✗ | Vector operator*( detail::BaseMatrixImpl const& A, | |
| 43 | detail::BaseVectorImpl const& v ) | ||
| 44 | { | ||
| 45 | ✗ | assert(A.columns() == v.size()); | |
| 46 | |||
| 47 | ✗ | Vector result(A.rows(), 0.0); | |
| 48 | ✗ | for (size_t i = 0; i < A.rows(); ++i) | |
| 49 | ✗ | for (size_t j = 0; j < A.columns(); ++j) | |
| 50 | ✗ | result[i] += A(i,j) * v[j]; | |
| 51 | |||
| 52 | ✗ | return result; | |
| 53 | ✗ | } | |
| 54 | |||
| 55 | ✗ | Matrix operator*( detail::BaseMatrixImpl const& A, | |
| 56 | detail::BaseMatrixImpl const& B ) | ||
| 57 | { | ||
| 58 | ✗ | assert(A.columns() == B.rows()); | |
| 59 | |||
| 60 | ✗ | Matrix C(A.rows(), B.columns(), 0.0); | |
| 61 | ✗ | for (size_t i = 0; i < C.rows(); ++i) | |
| 62 | ✗ | for (size_t j = 0; j < C.columns(); ++j) | |
| 63 | ✗ | for (size_t k = 0; k < A.columns(); ++k) | |
| 64 | ✗ | C(i,j) += A(i,k) * B(k, j); | |
| 65 | |||
| 66 | ✗ | return C; | |
| 67 | ✗ | } | |
| 68 | |||
| 69 | ✗ | Matrix pseudo_inverse(detail::BaseMatrixImpl const& A) | |
| 70 | { | ||
| 71 | |||
| 72 | ✗ | Matrix U(A); | |
| 73 | ✗ | Matrix V(A.columns(), A.columns()); | |
| 74 | ✗ | Vector s(A.columns()); | |
| 75 | ✗ | gsl_vector* work = gsl_vector_alloc(A.columns()); | |
| 76 | |||
| 77 | ✗ | gsl_linalg_SV_decomp( U.get_gsl_matrix(), | |
| 78 | V.get_gsl_matrix(), | ||
| 79 | s.get_gsl_vector(), | ||
| 80 | work ); | ||
| 81 | |||
| 82 | ✗ | Matrix P(A.columns(), A.rows(), 0.0); | |
| 83 | |||
| 84 | ✗ | int sz = s.size(); | |
| 85 | ✗ | while ( sz-- > 0 && s[sz] == 0 ) {} | |
| 86 | ✗ | ++sz; | |
| 87 | ✗ | if (sz == 0) return P; | |
| 88 | ✗ | VectorView sv(s, sz); | |
| 89 | |||
| 90 | ✗ | for (size_t i = 0; i < sv.size(); ++i) | |
| 91 | { | ||
| 92 | ✗ | VectorView v = V.column_view(i); | |
| 93 | ✗ | v.scale(1/sv[i]); | |
| 94 | ✗ | for (size_t h = 0; h < P.rows(); ++h) | |
| 95 | ✗ | for (size_t k = 0; k < P.columns(); ++k) | |
| 96 | ✗ | P(h,k) += V(h,i) * U(k,i); | |
| 97 | ✗ | } | |
| 98 | |||
| 99 | ✗ | return P; | |
| 100 | ✗ | } | |
| 101 | |||
| 102 | |||
| 103 | ✗ | double trace (detail::BaseMatrixImpl const& A) | |
| 104 | { | ||
| 105 | ✗ | if (A.rows() != A.columns()) | |
| 106 | { | ||
| 107 | ✗ | THROW_RANGEERROR ("NL::Matrix: computing trace: " | |
| 108 | "rows() != columns()"); | ||
| 109 | } | ||
| 110 | ✗ | double t = 0; | |
| 111 | ✗ | for (size_t i = 0; i < A.rows(); ++i) | |
| 112 | { | ||
| 113 | ✗ | t += A(i,i); | |
| 114 | } | ||
| 115 | ✗ | return t; | |
| 116 | } | ||
| 117 | |||
| 118 | |||
| 119 | ✗ | double det (detail::BaseMatrixImpl const& A) | |
| 120 | { | ||
| 121 | ✗ | if (A.rows() != A.columns()) | |
| 122 | { | ||
| 123 | ✗ | THROW_RANGEERROR ("NL::Matrix: computing determinant: " | |
| 124 | "rows() != columns()"); | ||
| 125 | } | ||
| 126 | |||
| 127 | ✗ | Matrix LU(A); | |
| 128 | ✗ | int s; | |
| 129 | ✗ | gsl_permutation * p = gsl_permutation_alloc(LU.rows()); | |
| 130 | ✗ | gsl_linalg_LU_decomp (LU.get_gsl_matrix(), p, &s); | |
| 131 | |||
| 132 | ✗ | double t = 1; | |
| 133 | ✗ | for (size_t i = 0; i < LU.rows(); ++i) | |
| 134 | { | ||
| 135 | ✗ | t *= LU(i,i); | |
| 136 | } | ||
| 137 | |||
| 138 | ✗ | gsl_permutation_free(p); | |
| 139 | ✗ | return t; | |
| 140 | ✗ | } | |
| 141 | |||
| 142 | |||
| 143 | } } // end namespaces | ||
| 144 | |||
| 145 | /* | ||
| 146 | Local Variables: | ||
| 147 | mode:c++ | ||
| 148 | c-file-style:"stroustrup" | ||
| 149 | c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) | ||
| 150 | indent-tabs-mode:nil | ||
| 151 | fill-column:99 | ||
| 152 | End: | ||
| 153 | */ | ||
| 154 | // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : | ||
| 155 |