GCC Code Coverage Report


Directory: ./
File: include/2geom/line.h
Date: 2024-03-18 17:01:34
Exec Total Coverage
Lines: 33 116 28.4%
Functions: 10 37 27.0%
Branches: 7 64 10.9%

Line Branch Exec Source
1 /**
2 * \file
3 * \brief Infinite straight line
4 *//*
5 * Authors:
6 * Marco Cecchetti <mrcekets at gmail.com>
7 * Krzysztof KosiƄski <tweenk.pl@gmail.com>
8 * Copyright 2008-2011 Authors
9 *
10 * This library is free software; you can redistribute it and/or
11 * modify it either under the terms of the GNU Lesser General Public
12 * License version 2.1 as published by the Free Software Foundation
13 * (the "LGPL") or, at your option, under the terms of the Mozilla
14 * Public License Version 1.1 (the "MPL"). If you do not alter this
15 * notice, a recipient may use your version of this file under either
16 * the MPL or the LGPL.
17 *
18 * You should have received a copy of the LGPL along with this library
19 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * You should have received a copy of the MPL along with this library
22 * in the file COPYING-MPL-1.1
23 *
24 * The contents of this file are subject to the Mozilla Public License
25 * Version 1.1 (the "License"); you may not use this file except in
26 * compliance with the License. You may obtain a copy of the License at
27 * http://www.mozilla.org/MPL/
28 *
29 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
30 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
31 * the specific language governing rights and limitations.
32 */
33
34 #ifndef LIB2GEOM_SEEN_LINE_H
35 #define LIB2GEOM_SEEN_LINE_H
36
37 #include <cmath>
38 #include <optional>
39 #include <2geom/bezier-curve.h> // for LineSegment
40 #include <2geom/rect.h>
41 #include <2geom/crossing.h>
42 #include <2geom/exception.h>
43 #include <2geom/ray.h>
44 #include <2geom/angle.h>
45 #include <2geom/intersection.h>
46
47 namespace Geom
48 {
49
50 // class docs in cpp file
51 class Line
52 : boost::equality_comparable< Line >
53 {
54 private:
55 Point _initial;
56 Point _final;
57 public:
58 /// @name Creating lines.
59 /// @{
60 /** @brief Create a default horizontal line.
61 * Creates a line with unit speed going in +X direction. */
62 773 Line()
63 773 : _initial(0,0), _final(1,0)
64 773 {}
65 /** @brief Create a line with the specified inclination.
66 * @param origin One of the points on the line
67 * @param angle Angle of the line in mathematical convention */
68 Line(Point const &origin, Coord angle)
69 : _initial(origin)
70 {
71 Point v;
72 sincos(angle, v[Y], v[X]);
73 _final = _initial + v;
74 }
75
76 /** @brief Create a line going through two points.
77 * The first point will be at time 0, while the second one
78 * will be at time 1.
79 * @param a Initial point
80 * @param b First point */
81 20805 Line(Point const &a, Point const &b)
82 20805 : _initial(a)
83 20805 , _final(b)
84 20805 {}
85
86 /** @brief Create a line based on the coefficients of its equation.
87 @see Line::setCoefficients() */
88 Line(double a, double b, double c) {
89 setCoefficients(a, b, c);
90 }
91
92 /// Create a line by extending a line segment.
93 50014 explicit Line(LineSegment const &seg)
94 50014 : _initial(seg.initialPoint())
95 50014 , _final(seg.finalPoint())
96 50014 {}
97
98 /// Create a line by extending a ray.
99 explicit Line(Ray const &r)
100 : _initial(r.origin())
101 , _final(r.origin() + r.vector())
102 {}
103
104 /// Create a line normal to a vector at a specified distance from origin.
105 static Line from_normal_distance(Point const &n, Coord c) {
106 Point start = c * n.normalized();
107 Line l(start, start + rot90(n));
108 return l;
109 }
110 /** @brief Create a line from origin and unit vector.
111 * Note that each line direction has two possible unit vectors.
112 * @param o Point through which the line will pass
113 * @param v Unit vector of the line's direction */
114 static Line from_origin_and_vector(Point const &o, Point const &v) {
115 Line l(o, o + v);
116 return l;
117 }
118
119 Line* duplicate() const {
120 return new Line(*this);
121 }
122 /// @}
123
124 /// @name Retrieve and set the line's parameters.
125 /// @{
126
127 /// Get the line's origin point.
128 Point origin() const { return _initial; }
129 /** @brief Get the line's raw direction vector.
130 * The length of the retrieved vector is equal to the length of a segment parametrized by
131 * a time interval of length 1. */
132 147025 Point vector() const { return _final - _initial; }
133 /** @brief Get the line's normalized direction vector.
134 * The retrieved vector is normalized to unit length. */
135 Point versor() const { return (_final - _initial).normalized(); }
136 /// Angle the line makes with the X axis, in mathematical convention.
137 Coord angle() const {
138 Point d = _final - _initial;
139 double a = std::atan2(d[Y], d[X]);
140 if (a < 0) a += M_PI;
141 if (a == M_PI) a = 0;
142 return a;
143 }
144
145 /** @brief Set the point at zero time.
146 * The orientation remains unchanged, modulo numeric errors during addition. */
147 void setOrigin(Point const &p) {
148 Point d = p - _initial;
149 _initial = p;
150 _final += d;
151 }
152 /** @brief Set the speed of the line.
153 * Origin remains unchanged. */
154 void setVector(Point const &v) {
155 _final = _initial + v;
156 }
157
158 /** @brief Set the angle the line makes with the X axis.
159 * Origin remains unchanged. */
160 void setAngle(Coord angle) {
161 Point v;
162 sincos(angle, v[Y], v[X]);
163 v *= distance(_initial, _final);
164 _final = _initial + v;
165 }
166
167 /// Set a line based on two points it should pass through.
168 void setPoints(Point const &a, Point const &b) {
169 _initial = a;
170 _final = b;
171 }
172
173 /** @brief Set the coefficients of the line equation.
174 * The line equation is: \f$ax + by = c\f$. Points that satisfy the equation
175 * are on the line. */
176 void setCoefficients(double a, double b, double c);
177
178 /** @brief Get the coefficients of the line equation as a vector.
179 * @return STL vector @a v such that @a v[0] contains \f$a\f$, @a v[1] contains \f$b\f$,
180 * and @a v[2] contains \f$c\f$. */
181 std::vector<double> coefficients() const;
182
183 /// Get the coefficients of the line equation by reference.
184 void coefficients(Coord &a, Coord &b, Coord &c) const;
185
186 /** @brief Check if the line has more than one point.
187 * A degenerate line can be created if the line is created from a line equation
188 * that has no solutions.
189 * @return True if the line has no points or exactly one point */
190 40079 bool isDegenerate() const {
191 40079 return _initial == _final;
192 }
193 /// Check if the line is horizontal (y is constant).
194 bool isHorizontal() const {
195 return _initial[Y] == _final[Y];
196 }
197 /// Check if the line is vertical (x is constant).
198 bool isVertical() const {
199 return _initial[X] == _final[X];
200 }
201
202 /** @brief Reparametrize the line so that it has unit speed.
203 * Note that the direction of the line may also change. */
204 773 void normalize() {
205 // this helps with the nasty case of a line that starts somewhere far
206 // and ends very close to the origin
207
2/2
✓ Branch 2 taken 276 times.
✓ Branch 3 taken 497 times.
773 if (L2sq(_final) < L2sq(_initial)) {
208 276 std::swap(_initial, _final);
209 }
210 773 Point v = _final - _initial;
211
1/2
✓ Branch 1 taken 773 times.
✗ Branch 2 not taken.
773 v.normalize();
212 773 _final = _initial + v;
213 773 }
214 /** @brief Return a new line reparametrized for unit speed. */
215 Line normalized() const {
216 Point v = _final - _initial;
217 v.normalize();
218 Line ret(_initial, _initial + v);
219 return ret;
220 }
221 /// @}
222
223 /// @name Evaluate the line as a function.
224 ///@{
225 60040 Point initialPoint() const {
226 60040 return _initial;
227 }
228 20030 Point finalPoint() const {
229 20030 return _final;
230 }
231 20035 Point pointAt(Coord t) const {
232 20035 return lerp(t, _initial, _final);;
233 }
234
235 Coord valueAt(Coord t, Dim2 d) const {
236 return lerp(t, _initial[d], _final[d]);
237 }
238
239 Coord timeAt(Point const &p) const;
240
241 /** @brief Get a time value corresponding to a projection of a point on the line.
242 * @param p Arbitrary point.
243 * @return Time value corresponding to a point closest to @c p. */
244 Coord timeAtProjection(Point const& p) const {
245 if ( isDegenerate() ) return 0;
246 Point v = vector();
247 return dot(p - _initial, v) / dot(v, v);
248 }
249
250 /** @brief Find a point on the line closest to the query point.
251 * This is an alias for timeAtProjection(). */
252 Coord nearestTime(Point const &p) const {
253 return timeAtProjection(p);
254 }
255
256 std::vector<Coord> roots(Coord v, Dim2 d) const;
257 Coord root(Coord v, Dim2 d) const;
258 /// @}
259
260 /// @name Create other objects based on this line.
261 /// @{
262 void reverse() {
263 std::swap(_final, _initial);
264 }
265 /** @brief Create a line containing the same points, but in opposite direction.
266 * @return Line \f$g\f$ such that \f$g(t) = f(1-t)\f$ */
267 Line reversed() const {
268 Line result(_final, _initial);
269 return result;
270 }
271
272 /** @brief Same as segment(), but allocate the line segment dynamically. */
273 // TODO remove this?
274 Curve* portion(Coord f, Coord t) const {
275 LineSegment* seg = new LineSegment(pointAt(f), pointAt(t));
276 return seg;
277 }
278
279 /** @brief Create a segment of this line.
280 * @param f Time value for the initial point of the segment
281 * @param t Time value for the final point of the segment
282 * @return Created line segment */
283 LineSegment segment(Coord f, Coord t) const {
284 return LineSegment(pointAt(f), pointAt(t));
285 }
286
287 /// Return the portion of the line that is inside the given rectangle
288 std::optional<LineSegment> clip(Rect const &r) const;
289
290 /** @brief Create a ray starting at the specified time value.
291 * The created ray will go in the direction of the line's vector (in the direction
292 * of increasing time values).
293 * @param t Time value where the ray should start
294 * @return Ray starting at t and going in the direction of the vector */
295 Ray ray(Coord t) {
296 Ray result;
297 result.setOrigin(pointAt(t));
298 result.setVector(vector());
299 return result;
300 }
301
302 /** @brief Create a derivative of the line.
303 * The new line will always be degenerate. Its origin will be equal to this
304 * line's vector. */
305 Line derivative() const {
306 Point v = vector();
307 Line result(v, v);
308 return result;
309 }
310
311 /// Create a line transformed by an affine transformation.
312 Line transformed(Affine const& m) const {
313 Line l(_initial * m, _final * m);
314 return l;
315 }
316
317 /** @brief Get a unit vector normal to the line.
318 * If Y grows upwards, then this is the left normal. If Y grows downwards,
319 * then this is the right normal. */
320 Point normal() const {
321 return rot90(vector()).normalized();
322 }
323
324 // what does this do?
325 Point normalAndDist(double & dist) const {
326 Point n = normal();
327 dist = -dot(n, _initial);
328 return n;
329 }
330
331 /// Compute an affine matrix representing a reflection about the line.
332 Affine reflection() const {
333 Point v = versor();
334 Coord x2 = v[X]*v[X], y2 = v[Y]*v[Y], xy = v[X]*v[Y];
335 Affine m(x2-y2, 2.*xy,
336 2.*xy, y2-x2,
337 _initial[X], _initial[Y]);
338 m = Translate(-_initial) * m;
339 return m;
340 }
341
342 /** @brief Compute an affine which transforms all points on the line to zero X or Y coordinate.
343 * This operation is useful in reducing intersection problems to root-finding problems.
344 * There are many affines which do this transformation. This function returns one that
345 * preserves angles, areas and distances - a rotation combined with a translation, and
346 * additionally moves the initial point of the line to (0,0). This way it works without
347 * problems even for lines perpendicular to the target, though may in some cases have
348 * lower precision than e.g. a shear transform.
349 * @param d Which coordinate of points on the line should be zero after the transformation */
350 20024 Affine rotationToZero(Dim2 d) const {
351
1/2
✓ Branch 2 taken 20024 times.
✗ Branch 3 not taken.
20024 Point v = vector();
352
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 20024 times.
20024 if (d == X) {
353 std::swap(v[X], v[Y]);
354 } else {
355 20024 v[Y] = -v[Y];
356 }
357
2/4
✓ Branch 2 taken 20024 times.
✗ Branch 3 not taken.
✓ Branch 9 taken 20024 times.
✗ Branch 10 not taken.
20024 Affine m = Translate(-_initial) * Rotate(v);
358 40048 return m;
359 }
360 /** @brief Compute a rotation affine which transforms the line to one of the axes.
361 * @param d Which line should be the axis */
362 Affine rotationToAxis(Dim2 d) const {
363 Affine m = rotationToZero(other_dimension(d));
364 return m;
365 }
366
367 Affine transformTo(Line const &other) const;
368 /// @}
369
370 std::vector<ShapeIntersection> intersect(Line const &other) const;
371 std::vector<ShapeIntersection> intersect(Ray const &r) const;
372 std::vector<ShapeIntersection> intersect(LineSegment const &ls) const;
373
374 template <typename T>
375 Line &operator*=(T const &tr) {
376 BOOST_CONCEPT_ASSERT((TransformConcept<T>));
377 _initial *= tr;
378 _final *= tr;
379 return *this;
380 }
381
382 bool operator==(Line const &other) const {
383 if (distance(pointAt(nearestTime(other._initial)), other._initial) != 0) return false;
384 if (distance(pointAt(nearestTime(other._final)), other._final) != 0) return false;
385 return true;
386 }
387
388 template <typename T>
389 friend Line operator*(Line const &l, T const &tr) {
390 BOOST_CONCEPT_ASSERT((TransformConcept<T>));
391 Line result(l);
392 result *= tr;
393 return result;
394 }
395 }; // end class Line
396
397 /** @brief Removes intersections outside of the unit interval.
398 * A helper used to implement line segment intersections.
399 * @param xs Line intersections
400 * @param a Whether the first time value has to be in the unit interval
401 * @param b Whether the second time value has to be in the unit interval
402 * @return Appropriately filtered intersections */
403 void filter_line_segment_intersections(std::vector<ShapeIntersection> &xs, bool a=false, bool b=true);
404 void filter_ray_intersections(std::vector<ShapeIntersection> &xs, bool a=false, bool b=true);
405
406 /// @brief Compute distance from point to line.
407 /// @relates Line
408 inline
409 double distance(Point const &p, Line const &line)
410 {
411 if (line.isDegenerate()) {
412 return ::Geom::distance(p, line.initialPoint());
413 } else {
414 Coord t = line.nearestTime(p);
415 return ::Geom::distance(line.pointAt(t), p);
416 }
417 }
418
419 inline
420 bool are_near(Point const &p, Line const &line, double eps = EPSILON)
421 {
422 return are_near(distance(p, line), 0, eps);
423 }
424
425 inline
426 bool are_parallel(Line const &l1, Line const &l2, double eps = EPSILON)
427 {
428 return are_near(cross(l1.vector(), l2.vector()), 0, eps);
429 }
430
431 /** @brief Test whether two lines are approximately the same.
432 * This tests for being parallel and the origin of one line being close to the other,
433 * so it tests whether the images of the lines are similar, not whether the same time values
434 * correspond to similar points. For example a line from (1,1) to (2,2) and a line from
435 * (-1,-1) to (0,0) will be the same, because their images match, even though there is
436 * no time value for which the lines give similar points.
437 * @relates Line */
438 inline
439 bool are_same(Line const &l1, Line const &l2, double eps = EPSILON)
440 {
441 return are_parallel(l1, l2, eps) && are_near(l1.origin(), l2, eps);
442 }
443
444 /// Test whether two lines are perpendicular.
445 /// @relates Line
446 inline
447 bool are_orthogonal(Line const &l1, Line const &l2, double eps = EPSILON)
448 {
449 return are_near(dot(l1.vector(), l2.vector()), 0, eps);
450 }
451
452 // evaluate the angle between l1 and l2 rotating l1 in cw direction
453 // until it overlaps l2
454 // the returned value is an angle in the interval [0, PI[
455 inline
456 double angle_between(Line const& l1, Line const& l2)
457 {
458 double angle = angle_between(l1.vector(), l2.vector());
459 if (angle < 0) angle += M_PI;
460 if (angle == M_PI) angle = 0;
461 return angle;
462 }
463
464 inline
465 double distance(Point const &p, LineSegment const &seg)
466 {
467 double t = seg.nearestTime(p);
468 return distance(p, seg.pointAt(t));
469 }
470
471 inline
472 bool are_near(Point const &p, LineSegment const &seg, double eps = EPSILON)
473 {
474 return are_near(distance(p, seg), 0, eps);
475 }
476
477 // build a line passing by _point and orthogonal to _line
478 inline
479 Line make_orthogonal_line(Point const &p, Line const &line)
480 {
481 Point d = line.vector().cw();
482 Line l(p, p + d);
483 return l;
484 }
485
486 // build a line passing by _point and parallel to _line
487 inline
488 Line make_parallel_line(Point const &p, Line const &line)
489 {
490 Line result(line);
491 result.setOrigin(p);
492 return result;
493 }
494
495 // build a line passing by the middle point of _segment and orthogonal to it.
496 inline
497 Line make_bisector_line(LineSegment const& _segment)
498 {
499 return make_orthogonal_line( middle_point(_segment), Line(_segment) );
500 }
501
502 // build the bisector line of the angle between ray(O,A) and ray(O,B)
503 inline
504 Line make_angle_bisector_line(Point const &A, Point const &O, Point const &B)
505 {
506 AngleInterval ival(Angle(A-O), Angle(B-O));
507 Angle bisect = ival.angleAt(0.5);
508 return Line(O, bisect);
509 }
510
511 // prj(P) = rot(v, Point( rot(-v, P-O)[X], 0 )) + O
512 inline
513 Point projection(Point const &p, Line const &line)
514 {
515 return line.pointAt(line.nearestTime(p));
516 }
517
518 inline
519 LineSegment projection(LineSegment const &seg, Line const &line)
520 {
521 return line.segment(line.nearestTime(seg.initialPoint()),
522 line.nearestTime(seg.finalPoint()));
523 }
524
525 inline
526 std::optional<LineSegment> clip(Line const &l, Rect const &r) {
527 return l.clip(r);
528 }
529
530
531 namespace detail
532 {
533
534 OptCrossing intersection_impl(Ray const& r1, Line const& l2, unsigned int i);
535 OptCrossing intersection_impl( LineSegment const& ls1,
536 Line const& l2,
537 unsigned int i );
538 OptCrossing intersection_impl( LineSegment const& ls1,
539 Ray const& r2,
540 unsigned int i );
541 }
542
543
544 inline
545 OptCrossing intersection(Ray const& r1, Line const& l2)
546 {
547 return detail::intersection_impl(r1, l2, 0);
548
549 }
550
551 inline
552 OptCrossing intersection(Line const& l1, Ray const& r2)
553 {
554 return detail::intersection_impl(r2, l1, 1);
555 }
556
557 inline
558 OptCrossing intersection(LineSegment const& ls1, Line const& l2)
559 {
560 return detail::intersection_impl(ls1, l2, 0);
561 }
562
563 inline
564 OptCrossing intersection(Line const& l1, LineSegment const& ls2)
565 {
566 return detail::intersection_impl(ls2, l1, 1);
567 }
568
569 inline
570 OptCrossing intersection(LineSegment const& ls1, Ray const& r2)
571 {
572 return detail::intersection_impl(ls1, r2, 0);
573
574 }
575
576 inline
577 OptCrossing intersection(Ray const& r1, LineSegment const& ls2)
578 {
579 return detail::intersection_impl(ls2, r1, 1);
580 }
581
582
583 OptCrossing intersection(Line const& l1, Line const& l2);
584
585 OptCrossing intersection(Ray const& r1, Ray const& r2);
586
587 OptCrossing intersection(LineSegment const& ls1, LineSegment const& ls2);
588
589
590 } // end namespace Geom
591
592
593 #endif // LIB2GEOM_SEEN_LINE_H
594
595
596 /*
597 Local Variables:
598 mode:c++
599 c-file-style:"stroustrup"
600 c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
601 indent-tabs-mode:nil
602 fill-column:99
603 End:
604 */
605 // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
606