| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /** | ||
| 2 | * \brief Various geometrical calculations. | ||
| 3 | */ | ||
| 4 | |||
| 5 | #include <2geom/geom.h> | ||
| 6 | #include <2geom/point.h> | ||
| 7 | #include <algorithm> | ||
| 8 | #include <optional> | ||
| 9 | #include <2geom/rect.h> | ||
| 10 | |||
| 11 | using std::swap; | ||
| 12 | |||
| 13 | namespace Geom { | ||
| 14 | |||
| 15 | enum IntersectorKind { | ||
| 16 | intersects = 0, | ||
| 17 | parallel, | ||
| 18 | coincident, | ||
| 19 | no_intersection | ||
| 20 | }; | ||
| 21 | |||
| 22 | /** | ||
| 23 | * Finds the intersection of the two (infinite) lines | ||
| 24 | * defined by the points p such that dot(n0, p) == d0 and dot(n1, p) == d1. | ||
| 25 | * | ||
| 26 | * If the two lines intersect, then \a result becomes their point of | ||
| 27 | * intersection; otherwise, \a result remains unchanged. | ||
| 28 | * | ||
| 29 | * This function finds the intersection of the two lines (infinite) | ||
| 30 | * defined by n0.X = d0 and x1.X = d1. The algorithm is as follows: | ||
| 31 | * To compute the intersection point use kramer's rule: | ||
| 32 | * \verbatim | ||
| 33 | * convert lines to form | ||
| 34 | * ax + by = c | ||
| 35 | * dx + ey = f | ||
| 36 | * | ||
| 37 | * ( | ||
| 38 | * e.g. a = (x2 - x1), b = (y2 - y1), c = (x2 - x1)*x1 + (y2 - y1)*y1 | ||
| 39 | * ) | ||
| 40 | * | ||
| 41 | * In our case we use: | ||
| 42 | * a = n0.x d = n1.x | ||
| 43 | * b = n0.y e = n1.y | ||
| 44 | * c = d0 f = d1 | ||
| 45 | * | ||
| 46 | * so: | ||
| 47 | * | ||
| 48 | * adx + bdy = cd | ||
| 49 | * adx + aey = af | ||
| 50 | * | ||
| 51 | * bdy - aey = cd - af | ||
| 52 | * (bd - ae)y = cd - af | ||
| 53 | * | ||
| 54 | * y = (cd - af)/(bd - ae) | ||
| 55 | * | ||
| 56 | * repeat for x and you get: | ||
| 57 | * | ||
| 58 | * x = (fb - ce)/(bd - ae) \endverbatim | ||
| 59 | * | ||
| 60 | * If the denominator (bd-ae) is 0 then the lines are parallel, if the | ||
| 61 | * numerators are 0 then the lines coincide. | ||
| 62 | * | ||
| 63 | * \todo Why not use existing but outcommented code below | ||
| 64 | * (HAVE_NEW_INTERSECTOR_CODE)? | ||
| 65 | */ | ||
| 66 | IntersectorKind | ||
| 67 | ✗ | line_intersection(Geom::Point const &n0, double const d0, | |
| 68 | Geom::Point const &n1, double const d1, | ||
| 69 | Geom::Point &result) | ||
| 70 | { | ||
| 71 | ✗ | double denominator = dot(Geom::rot90(n0), n1); | |
| 72 | ✗ | double X = n1[Geom::Y] * d0 - | |
| 73 | ✗ | n0[Geom::Y] * d1; | |
| 74 | /* X = (-d1, d0) dot (n0[Y], n1[Y]) */ | ||
| 75 | |||
| 76 | ✗ | if (denominator == 0) { | |
| 77 | ✗ | if ( X == 0 ) { | |
| 78 | ✗ | return coincident; | |
| 79 | } else { | ||
| 80 | ✗ | return parallel; | |
| 81 | } | ||
| 82 | } | ||
| 83 | |||
| 84 | ✗ | double Y = n0[Geom::X] * d1 - | |
| 85 | ✗ | n1[Geom::X] * d0; | |
| 86 | |||
| 87 | ✗ | result = Geom::Point(X, Y) / denominator; | |
| 88 | |||
| 89 | ✗ | return intersects; | |
| 90 | } | ||
| 91 | |||
| 92 | |||
| 93 | |||
| 94 | /* ccw exists as a building block */ | ||
| 95 | int | ||
| 96 | ✗ | intersector_ccw(const Geom::Point& p0, const Geom::Point& p1, | |
| 97 | const Geom::Point& p2) | ||
| 98 | /* Determine which way a set of three points winds. */ | ||
| 99 | { | ||
| 100 | ✗ | Geom::Point d1 = p1 - p0; | |
| 101 | ✗ | Geom::Point d2 = p2 - p0; | |
| 102 | /* compare slopes but avoid division operation */ | ||
| 103 | ✗ | double c = dot(Geom::rot90(d1), d2); | |
| 104 | ✗ | if(c > 0) | |
| 105 | ✗ | return +1; // ccw - do these match def'n in header? | |
| 106 | ✗ | if(c < 0) | |
| 107 | ✗ | return -1; // cw | |
| 108 | |||
| 109 | /* Colinear [or NaN]. Decide the order. */ | ||
| 110 | ✗ | if ( ( d1[0] * d2[0] < 0 ) || | |
| 111 | ✗ | ( d1[1] * d2[1] < 0 ) ) { | |
| 112 | ✗ | return -1; // p2 < p0 < p1 | |
| 113 | ✗ | } else if ( dot(d1,d1) < dot(d2,d2) ) { | |
| 114 | ✗ | return +1; // p0 <= p1 < p2 | |
| 115 | } else { | ||
| 116 | ✗ | return 0; // p0 <= p2 <= p1 | |
| 117 | } | ||
| 118 | } | ||
| 119 | |||
| 120 | /** Determine whether the line segment from p00 to p01 intersects the | ||
| 121 | infinite line passing through p10 and p11. This doesn't find the | ||
| 122 | point of intersection, use the line_intersect function above, | ||
| 123 | or the segment_intersection interface below. | ||
| 124 | |||
| 125 | \pre neither segment is zero-length; i.e. p00 != p01 and p10 != p11. | ||
| 126 | */ | ||
| 127 | bool | ||
| 128 | ✗ | line_segment_intersectp(Geom::Point const &p00, Geom::Point const &p01, | |
| 129 | Geom::Point const &p10, Geom::Point const &p11) | ||
| 130 | { | ||
| 131 | ✗ | if(p00 == p01) return false; | |
| 132 | ✗ | if(p10 == p11) return false; | |
| 133 | |||
| 134 | ✗ | return ((intersector_ccw(p00, p01, p10) * intersector_ccw(p00, p01, p11)) <= 0 ); | |
| 135 | } | ||
| 136 | |||
| 137 | |||
| 138 | /** Determine whether two line segments intersect. This doesn't find | ||
| 139 | the point of intersection, use the line_intersect function above, | ||
| 140 | or the segment_intersection interface below. | ||
| 141 | |||
| 142 | \pre neither segment is zero-length; i.e. p00 != p01 and p10 != p11. | ||
| 143 | */ | ||
| 144 | bool | ||
| 145 | ✗ | segment_intersectp(Geom::Point const &p00, Geom::Point const &p01, | |
| 146 | Geom::Point const &p10, Geom::Point const &p11) | ||
| 147 | { | ||
| 148 | ✗ | if(p00 == p01) return false; | |
| 149 | ✗ | if(p10 == p11) return false; | |
| 150 | |||
| 151 | /* true iff ( (the p1 segment straddles the p0 infinite line) | ||
| 152 | * and (the p0 segment straddles the p1 infinite line) ). */ | ||
| 153 | ✗ | return (line_segment_intersectp(p00, p01, p10, p11) && | |
| 154 | ✗ | line_segment_intersectp(p10, p11, p00, p01)); | |
| 155 | } | ||
| 156 | |||
| 157 | /** Determine whether \& where a line segments intersects an (infinite) line. | ||
| 158 | |||
| 159 | If there is no intersection, then \a result remains unchanged. | ||
| 160 | |||
| 161 | \pre neither segment is zero-length; i.e. p00 != p01 and p10 != p11. | ||
| 162 | **/ | ||
| 163 | IntersectorKind | ||
| 164 | ✗ | line_segment_intersect(Geom::Point const &p00, Geom::Point const &p01, | |
| 165 | Geom::Point const &p10, Geom::Point const &p11, | ||
| 166 | Geom::Point &result) | ||
| 167 | { | ||
| 168 | ✗ | if(line_segment_intersectp(p00, p01, p10, p11)) { | |
| 169 | ✗ | Geom::Point n0 = (p01 - p00).ccw(); | |
| 170 | ✗ | double d0 = dot(n0,p00); | |
| 171 | |||
| 172 | ✗ | Geom::Point n1 = (p11 - p10).ccw(); | |
| 173 | ✗ | double d1 = dot(n1,p10); | |
| 174 | ✗ | return line_intersection(n0, d0, n1, d1, result); | |
| 175 | } else { | ||
| 176 | ✗ | return no_intersection; | |
| 177 | } | ||
| 178 | } | ||
| 179 | |||
| 180 | |||
| 181 | /** Determine whether \& where two line segments intersect. | ||
| 182 | |||
| 183 | If the two segments don't intersect, then \a result remains unchanged. | ||
| 184 | |||
| 185 | \pre neither segment is zero-length; i.e. p00 != p01 and p10 != p11. | ||
| 186 | **/ | ||
| 187 | IntersectorKind | ||
| 188 | ✗ | segment_intersect(Geom::Point const &p00, Geom::Point const &p01, | |
| 189 | Geom::Point const &p10, Geom::Point const &p11, | ||
| 190 | Geom::Point &result) | ||
| 191 | { | ||
| 192 | ✗ | if(segment_intersectp(p00, p01, p10, p11)) { | |
| 193 | ✗ | Geom::Point n0 = (p01 - p00).ccw(); | |
| 194 | ✗ | double d0 = dot(n0,p00); | |
| 195 | |||
| 196 | ✗ | Geom::Point n1 = (p11 - p10).ccw(); | |
| 197 | ✗ | double d1 = dot(n1,p10); | |
| 198 | ✗ | return line_intersection(n0, d0, n1, d1, result); | |
| 199 | } else { | ||
| 200 | ✗ | return no_intersection; | |
| 201 | } | ||
| 202 | } | ||
| 203 | |||
| 204 | /** Determine whether \& where two line segments intersect. | ||
| 205 | |||
| 206 | If the two segments don't intersect, then \a result remains unchanged. | ||
| 207 | |||
| 208 | \pre neither segment is zero-length; i.e. p00 != p01 and p10 != p11. | ||
| 209 | **/ | ||
| 210 | IntersectorKind | ||
| 211 | ✗ | line_twopoint_intersect(Geom::Point const &p00, Geom::Point const &p01, | |
| 212 | Geom::Point const &p10, Geom::Point const &p11, | ||
| 213 | Geom::Point &result) | ||
| 214 | { | ||
| 215 | ✗ | Geom::Point n0 = (p01 - p00).ccw(); | |
| 216 | ✗ | double d0 = dot(n0,p00); | |
| 217 | |||
| 218 | ✗ | Geom::Point n1 = (p11 - p10).ccw(); | |
| 219 | ✗ | double d1 = dot(n1,p10); | |
| 220 | ✗ | return line_intersection(n0, d0, n1, d1, result); | |
| 221 | } | ||
| 222 | |||
| 223 | // this is used to compare points for std::sort below | ||
| 224 | static bool | ||
| 225 | ✗ | is_less(Point const &A, Point const &B) | |
| 226 | { | ||
| 227 | ✗ | if (A[X] < B[X]) { | |
| 228 | ✗ | return true; | |
| 229 | ✗ | } else if (A[X] == B[X] && A[Y] < B[Y]) { | |
| 230 | ✗ | return true; | |
| 231 | } else { | ||
| 232 | ✗ | return false; | |
| 233 | } | ||
| 234 | } | ||
| 235 | |||
| 236 | // TODO: this can doubtlessly be improved | ||
| 237 | static void | ||
| 238 | ✗ | eliminate_duplicates_p(std::vector<Point> &pts) | |
| 239 | { | ||
| 240 | ✗ | unsigned int size = pts.size(); | |
| 241 | |||
| 242 | ✗ | if (size < 2) | |
| 243 | ✗ | return; | |
| 244 | |||
| 245 | ✗ | if (size == 2) { | |
| 246 | ✗ | if (pts[0] == pts[1]) { | |
| 247 | ✗ | pts.pop_back(); | |
| 248 | } | ||
| 249 | } else { | ||
| 250 | ✗ | std::sort(pts.begin(), pts.end(), &is_less); | |
| 251 | ✗ | if (size == 3) { | |
| 252 | ✗ | if (pts[0] == pts[1]) { | |
| 253 | ✗ | pts.erase(pts.begin()); | |
| 254 | ✗ | } else if (pts[1] == pts[2]) { | |
| 255 | ✗ | pts.pop_back(); | |
| 256 | } | ||
| 257 | } else { | ||
| 258 | // we have size == 4 | ||
| 259 | ✗ | if (pts[2] == pts[3]) { | |
| 260 | ✗ | pts.pop_back(); | |
| 261 | } | ||
| 262 | ✗ | if (pts[0] == pts[1]) { | |
| 263 | ✗ | pts.erase(pts.begin()); | |
| 264 | } | ||
| 265 | } | ||
| 266 | } | ||
| 267 | } | ||
| 268 | |||
| 269 | /** Determine whether \& where an (infinite) line intersects a rectangle. | ||
| 270 | * | ||
| 271 | * \a c0, \a c1 are diagonal corners of the rectangle and | ||
| 272 | * \a p1, \a p1 are distinct points on the line | ||
| 273 | * | ||
| 274 | * \return A list (possibly empty) of points of intersection. If two such points (say \a r0 and \a | ||
| 275 | * r1) then it is guaranteed that the order of \a r0, \a r1 along the line is the same as the that | ||
| 276 | * of \a c0, \a c1 (i.e., the vectors \a r1 - \a r0 and \a p1 - \a p0 point into the same | ||
| 277 | * direction). | ||
| 278 | */ | ||
| 279 | std::vector<Geom::Point> | ||
| 280 | ✗ | rect_line_intersect(Geom::Point const &c0, Geom::Point const &c1, | |
| 281 | Geom::Point const &p0, Geom::Point const &p1) | ||
| 282 | { | ||
| 283 | using namespace Geom; | ||
| 284 | |||
| 285 | ✗ | std::vector<Point> results; | |
| 286 | |||
| 287 | ✗ | Point A(c0); | |
| 288 | ✗ | Point C(c1); | |
| 289 | |||
| 290 | ✗ | Point B(A[X], C[Y]); | |
| 291 | ✗ | Point D(C[X], A[Y]); | |
| 292 | |||
| 293 | ✗ | Point res; | |
| 294 | |||
| 295 | ✗ | if (line_segment_intersect(p0, p1, A, B, res) == intersects) { | |
| 296 | ✗ | results.push_back(res); | |
| 297 | } | ||
| 298 | ✗ | if (line_segment_intersect(p0, p1, B, C, res) == intersects) { | |
| 299 | ✗ | results.push_back(res); | |
| 300 | } | ||
| 301 | ✗ | if (line_segment_intersect(p0, p1, C, D, res) == intersects) { | |
| 302 | ✗ | results.push_back(res); | |
| 303 | } | ||
| 304 | ✗ | if (line_segment_intersect(p0, p1, D, A, res) == intersects) { | |
| 305 | ✗ | results.push_back(res); | |
| 306 | } | ||
| 307 | |||
| 308 | ✗ | eliminate_duplicates_p(results); | |
| 309 | |||
| 310 | ✗ | if (results.size() == 2) { | |
| 311 | // sort the results so that the order is the same as that of p0 and p1 | ||
| 312 | ✗ | Point dir1 (results[1] - results[0]); | |
| 313 | ✗ | Point dir2 (p1 - p0); | |
| 314 | ✗ | if (dot(dir1, dir2) < 0) { | |
| 315 | ✗ | swap(results[0], results[1]); | |
| 316 | } | ||
| 317 | } | ||
| 318 | |||
| 319 | ✗ | return results; | |
| 320 | ✗ | } | |
| 321 | |||
| 322 | /** Determine whether \& where an (infinite) line intersects a rectangle. | ||
| 323 | * | ||
| 324 | * \a c0, \a c1 are diagonal corners of the rectangle and | ||
| 325 | * \a p1, \a p1 are distinct points on the line | ||
| 326 | * | ||
| 327 | * \return A list (possibly empty) of points of intersection. If two such points (say \a r0 and \a | ||
| 328 | * r1) then it is guaranteed that the order of \a r0, \a r1 along the line is the same as the that | ||
| 329 | * of \a c0, \a c1 (i.e., the vectors \a r1 - \a r0 and \a p1 - \a p0 point into the same | ||
| 330 | * direction). | ||
| 331 | */ | ||
| 332 | std::optional<LineSegment> | ||
| 333 | ✗ | rect_line_intersect(Geom::Rect &r, | |
| 334 | Geom::LineSegment ls) | ||
| 335 | { | ||
| 336 | ✗ | std::vector<Point> results; | |
| 337 | |||
| 338 | ✗ | results = rect_line_intersect(r.min(), r.max(), ls[0], ls[1]); | |
| 339 | ✗ | if(results.size() == 2) { | |
| 340 | ✗ | return LineSegment(results[0], results[1]); | |
| 341 | } | ||
| 342 | ✗ | return std::optional<LineSegment>(); | |
| 343 | ✗ | } | |
| 344 | |||
| 345 | std::optional<LineSegment> | ||
| 346 | ✗ | rect_line_intersect(Geom::Rect &r, | |
| 347 | Geom::Line l) | ||
| 348 | { | ||
| 349 | ✗ | return rect_line_intersect(r, l.segment(0, 1)); | |
| 350 | } | ||
| 351 | |||
| 352 | /** | ||
| 353 | * polyCentroid: Calculates the centroid (xCentroid, yCentroid) and area of a polygon, given its | ||
| 354 | * vertices (x[0], y[0]) ... (x[n-1], y[n-1]). It is assumed that the contour is closed, i.e., that | ||
| 355 | * the vertex following (x[n-1], y[n-1]) is (x[0], y[0]). The algebraic sign of the area is | ||
| 356 | * positive for counterclockwise ordering of vertices in x-y plane; otherwise negative. | ||
| 357 | |||
| 358 | * Returned values: | ||
| 359 | 0 for normal execution; | ||
| 360 | 1 if the polygon is degenerate (number of vertices < 3); | ||
| 361 | 2 if area = 0 (and the centroid is undefined). | ||
| 362 | |||
| 363 | * for now we require the path to be a polyline and assume it is closed. | ||
| 364 | **/ | ||
| 365 | |||
| 366 | ✗ | int centroid(std::vector<Geom::Point> const &p, Geom::Point& centroid, double &area) { | |
| 367 | ✗ | const unsigned n = p.size(); | |
| 368 | ✗ | if (n < 3) | |
| 369 | ✗ | return 1; | |
| 370 | ✗ | Geom::Point centroid_tmp(0,0); | |
| 371 | ✗ | double atmp = 0; | |
| 372 | ✗ | for (unsigned i = n-1, j = 0; j < n; i = j, j++) { | |
| 373 | ✗ | const double ai = cross(p[j], p[i]); | |
| 374 | ✗ | atmp += ai; | |
| 375 | ✗ | centroid_tmp += (p[j] + p[i])*ai; // first moment. | |
| 376 | } | ||
| 377 | ✗ | area = atmp / 2; | |
| 378 | ✗ | if (atmp != 0) { | |
| 379 | ✗ | centroid = centroid_tmp / (3 * atmp); | |
| 380 | ✗ | return 0; | |
| 381 | } | ||
| 382 | ✗ | return 2; | |
| 383 | } | ||
| 384 | |||
| 385 | } | ||
| 386 | |||
| 387 | /* | ||
| 388 | Local Variables: | ||
| 389 | mode:c++ | ||
| 390 | c-file-style:"stroustrup" | ||
| 391 | c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) | ||
| 392 | indent-tabs-mode:nil | ||
| 393 | fill-column:99 | ||
| 394 | End: | ||
| 395 | */ | ||
| 396 | // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : | ||
| 397 |