| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /* | ||
| 2 | * Fitting Tools | ||
| 3 | * | ||
| 4 | * Authors: | ||
| 5 | * Marco Cecchetti <mrcekets at gmail.com> | ||
| 6 | * | ||
| 7 | * Copyright 2008 authors | ||
| 8 | * | ||
| 9 | * This library is free software; you can redistribute it and/or | ||
| 10 | * modify it either under the terms of the GNU Lesser General Public | ||
| 11 | * License version 2.1 as published by the Free Software Foundation | ||
| 12 | * (the "LGPL") or, at your option, under the terms of the Mozilla | ||
| 13 | * Public License Version 1.1 (the "MPL"). If you do not alter this | ||
| 14 | * notice, a recipient may use your version of this file under either | ||
| 15 | * the MPL or the LGPL. | ||
| 16 | * | ||
| 17 | * You should have received a copy of the LGPL along with this library | ||
| 18 | * in the file COPYING-LGPL-2.1; if not, write to the Free Software | ||
| 19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
| 20 | * You should have received a copy of the MPL along with this library | ||
| 21 | * in the file COPYING-MPL-1.1 | ||
| 22 | * | ||
| 23 | * The contents of this file are subject to the Mozilla Public License | ||
| 24 | * Version 1.1 (the "License"); you may not use this file except in | ||
| 25 | * compliance with the License. You may obtain a copy of the License at | ||
| 26 | * http://www.mozilla.org/MPL/ | ||
| 27 | * | ||
| 28 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY | ||
| 29 | * OF ANY KIND, either express or implied. See the LGPL or the MPL for | ||
| 30 | * the specific language governing rights and limitations. | ||
| 31 | */ | ||
| 32 | |||
| 33 | |||
| 34 | #ifndef _NL_FITTING_TOOL_H_ | ||
| 35 | #define _NL_FITTING_TOOL_H_ | ||
| 36 | |||
| 37 | |||
| 38 | #include <2geom/numeric/vector.h> | ||
| 39 | #include <2geom/numeric/matrix.h> | ||
| 40 | |||
| 41 | #include <2geom/point.h> | ||
| 42 | |||
| 43 | #include <vector> | ||
| 44 | |||
| 45 | |||
| 46 | /* | ||
| 47 | * The least_square_fitter class represents a tool for solving a fitting | ||
| 48 | * problem with respect to a given model that represents an expression | ||
| 49 | * dependent from a parameter where the coefficients of this expression | ||
| 50 | * are the unknowns of the fitting problem. | ||
| 51 | * The minimizing solution is found by computing the pseudo-inverse | ||
| 52 | * of the problem matrix | ||
| 53 | */ | ||
| 54 | |||
| 55 | |||
| 56 | namespace Geom { namespace NL { | ||
| 57 | |||
| 58 | namespace detail { | ||
| 59 | |||
| 60 | template< typename ModelT> | ||
| 61 | class lsf_base | ||
| 62 | { | ||
| 63 | public: | ||
| 64 | typedef ModelT model_type; | ||
| 65 | typedef typename model_type::parameter_type parameter_type; | ||
| 66 | typedef typename model_type::value_type value_type; | ||
| 67 | |||
| 68 | ✗ | lsf_base(model_type const &_model, size_t forecasted_samples) | |
| 69 | ✗ | : m_model(_model) | |
| 70 | ✗ | , m_total_samples(0) | |
| 71 | ✗ | , m_matrix(forecasted_samples, m_model.size()) | |
| 72 | ✗ | , m_psdinv_matrix(nullptr) | |
| 73 | ✗ | {} | |
| 74 | |||
| 75 | // compute pseudo inverse | ||
| 76 | ✗ | void update() | |
| 77 | { | ||
| 78 | ✗ | if (total_samples() == 0) return; | |
| 79 | ✗ | if (m_psdinv_matrix != NULL) | |
| 80 | { | ||
| 81 | ✗ | delete m_psdinv_matrix; | |
| 82 | } | ||
| 83 | ✗ | MatrixView mv(m_matrix, 0, 0, total_samples(), m_matrix.columns()); | |
| 84 | ✗ | m_psdinv_matrix = new Matrix( pseudo_inverse(mv) ); | |
| 85 | ✗ | assert(m_psdinv_matrix != NULL); | |
| 86 | ✗ | } | |
| 87 | |||
| 88 | ✗ | size_t total_samples() const | |
| 89 | { | ||
| 90 | ✗ | return m_total_samples; | |
| 91 | } | ||
| 92 | |||
| 93 | ✗ | bool is_full() const | |
| 94 | { | ||
| 95 | ✗ | return (total_samples() == m_matrix.rows()); | |
| 96 | } | ||
| 97 | |||
| 98 | void clear() | ||
| 99 | { | ||
| 100 | m_total_samples = 0; | ||
| 101 | } | ||
| 102 | |||
| 103 | virtual | ||
| 104 | ✗ | ~lsf_base() | |
| 105 | { | ||
| 106 | ✗ | if (m_psdinv_matrix != NULL) | |
| 107 | { | ||
| 108 | ✗ | delete m_psdinv_matrix; | |
| 109 | } | ||
| 110 | ✗ | } | |
| 111 | |||
| 112 | protected: | ||
| 113 | const model_type & m_model; | ||
| 114 | size_t m_total_samples; | ||
| 115 | Matrix m_matrix; | ||
| 116 | Matrix* m_psdinv_matrix; | ||
| 117 | |||
| 118 | }; // end class lsf_base | ||
| 119 | |||
| 120 | |||
| 121 | |||
| 122 | |||
| 123 | template< typename ModelT, typename ValueType = typename ModelT::value_type> | ||
| 124 | class lsf_solution | ||
| 125 | { | ||
| 126 | }; | ||
| 127 | |||
| 128 | // a fitting process on samples with value of type double | ||
| 129 | // produces a solution of type Vector | ||
| 130 | template< typename ModelT> | ||
| 131 | class lsf_solution<ModelT, double> | ||
| 132 | : public lsf_base<ModelT> | ||
| 133 | { | ||
| 134 | public: | ||
| 135 | typedef ModelT model_type; | ||
| 136 | typedef typename model_type::parameter_type parameter_type; | ||
| 137 | typedef typename model_type::value_type value_type; | ||
| 138 | typedef Vector solution_type; | ||
| 139 | typedef lsf_base<model_type> base_type; | ||
| 140 | |||
| 141 | using base_type::m_model; | ||
| 142 | using base_type::m_psdinv_matrix; | ||
| 143 | using base_type::total_samples; | ||
| 144 | |||
| 145 | public: | ||
| 146 | ✗ | lsf_solution(model_type const &_model, | |
| 147 | size_t forecasted_samples) | ||
| 148 | : base_type(_model, forecasted_samples) | ||
| 149 | ✗ | , m_solution(_model.size()) | |
| 150 | ✗ | {} | |
| 151 | |||
| 152 | template< typename VectorT > | ||
| 153 | ✗ | solution_type& result(VectorT const& sample_values) | |
| 154 | { | ||
| 155 | ✗ | assert(sample_values.size() == total_samples()); | |
| 156 | ✗ | ConstVectorView sv(sample_values); | |
| 157 | ✗ | m_solution = (*m_psdinv_matrix) * sv; | |
| 158 | ✗ | return m_solution; | |
| 159 | ✗ | } | |
| 160 | |||
| 161 | // a comparison between old sample values and the new ones is performed | ||
| 162 | // in order to minimize computation | ||
| 163 | // prerequisite: | ||
| 164 | // old_sample_values.size() == new_sample_values.size() | ||
| 165 | // no update() call can be performed between two result invocations | ||
| 166 | template< typename VectorT > | ||
| 167 | solution_type& result( VectorT const& old_sample_values, | ||
| 168 | VectorT const& new_sample_values ) | ||
| 169 | { | ||
| 170 | assert(old_sample_values.size() == total_samples()); | ||
| 171 | assert(new_sample_values.size() == total_samples()); | ||
| 172 | Vector diff(total_samples()); | ||
| 173 | for (size_t i = 0; i < diff.size(); ++i) | ||
| 174 | { | ||
| 175 | diff[i] = new_sample_values[i] - old_sample_values[i]; | ||
| 176 | } | ||
| 177 | Vector column(m_model.size()); | ||
| 178 | Vector delta(m_model.size(), 0.0); | ||
| 179 | for (size_t i = 0; i < diff.size(); ++i) | ||
| 180 | { | ||
| 181 | if (diff[i] != 0) | ||
| 182 | { | ||
| 183 | column = m_psdinv_matrix->column_view(i); | ||
| 184 | column.scale(diff[i]); | ||
| 185 | delta += column; | ||
| 186 | } | ||
| 187 | } | ||
| 188 | m_solution += delta; | ||
| 189 | return m_solution; | ||
| 190 | } | ||
| 191 | |||
| 192 | ✗ | solution_type& result() | |
| 193 | { | ||
| 194 | ✗ | return m_solution; | |
| 195 | } | ||
| 196 | |||
| 197 | private: | ||
| 198 | solution_type m_solution; | ||
| 199 | |||
| 200 | }; // end class lsf_solution<ModelT, double> | ||
| 201 | |||
| 202 | |||
| 203 | // a fitting process on samples with value of type Point | ||
| 204 | // produces a solution of type Matrix (with 2 columns) | ||
| 205 | template< typename ModelT> | ||
| 206 | class lsf_solution<ModelT, Point> | ||
| 207 | : public lsf_base<ModelT> | ||
| 208 | { | ||
| 209 | public: | ||
| 210 | typedef ModelT model_type; | ||
| 211 | typedef typename model_type::parameter_type parameter_type; | ||
| 212 | typedef typename model_type::value_type value_type; | ||
| 213 | typedef Matrix solution_type; | ||
| 214 | typedef lsf_base<model_type> base_type; | ||
| 215 | |||
| 216 | using base_type::m_model; | ||
| 217 | using base_type::m_psdinv_matrix; | ||
| 218 | using base_type::total_samples; | ||
| 219 | |||
| 220 | public: | ||
| 221 | lsf_solution(model_type const &_model, | ||
| 222 | size_t forecasted_samples) | ||
| 223 | : base_type(_model, forecasted_samples) | ||
| 224 | , m_solution(_model.size(), 2) | ||
| 225 | {} | ||
| 226 | |||
| 227 | solution_type& result(std::vector<Point> const& sample_values) | ||
| 228 | { | ||
| 229 | assert(sample_values.size() == total_samples()); | ||
| 230 | Matrix svm(total_samples(), 2); | ||
| 231 | for (size_t i = 0; i < total_samples(); ++i) | ||
| 232 | { | ||
| 233 | svm(i, X) = sample_values[i][X]; | ||
| 234 | svm(i, Y) = sample_values[i][Y]; | ||
| 235 | } | ||
| 236 | m_solution = (*m_psdinv_matrix) * svm; | ||
| 237 | return m_solution; | ||
| 238 | } | ||
| 239 | |||
| 240 | // a comparison between old sample values and the new ones is performed | ||
| 241 | // in order to minimize computation | ||
| 242 | // prerequisite: | ||
| 243 | // old_sample_values.size() == new_sample_values.size() | ||
| 244 | // no update() call can to be performed between two result invocations | ||
| 245 | solution_type& result( std::vector<Point> const& old_sample_values, | ||
| 246 | std::vector<Point> const& new_sample_values ) | ||
| 247 | { | ||
| 248 | assert(old_sample_values.size() == total_samples()); | ||
| 249 | assert(new_sample_values.size() == total_samples()); | ||
| 250 | Matrix diff(total_samples(), 2); | ||
| 251 | for (size_t i = 0; i < total_samples(); ++i) | ||
| 252 | { | ||
| 253 | diff(i, X) = new_sample_values[i][X] - old_sample_values[i][X]; | ||
| 254 | diff(i, Y) = new_sample_values[i][Y] - old_sample_values[i][Y]; | ||
| 255 | } | ||
| 256 | Vector column(m_model.size()); | ||
| 257 | Matrix delta(m_model.size(), 2, 0.0); | ||
| 258 | VectorView deltax = delta.column_view(X); | ||
| 259 | VectorView deltay = delta.column_view(Y); | ||
| 260 | for (size_t i = 0; i < total_samples(); ++i) | ||
| 261 | { | ||
| 262 | if (diff(i, X) != 0) | ||
| 263 | { | ||
| 264 | column = m_psdinv_matrix->column_view(i); | ||
| 265 | column.scale(diff(i, X)); | ||
| 266 | deltax += column; | ||
| 267 | } | ||
| 268 | if (diff(i, Y) != 0) | ||
| 269 | { | ||
| 270 | column = m_psdinv_matrix->column_view(i); | ||
| 271 | column.scale(diff(i, Y)); | ||
| 272 | deltay += column; | ||
| 273 | } | ||
| 274 | } | ||
| 275 | m_solution += delta; | ||
| 276 | return m_solution; | ||
| 277 | } | ||
| 278 | |||
| 279 | solution_type& result() | ||
| 280 | { | ||
| 281 | return m_solution; | ||
| 282 | } | ||
| 283 | |||
| 284 | private: | ||
| 285 | solution_type m_solution; | ||
| 286 | |||
| 287 | }; // end class lsf_solution<ModelT, Point> | ||
| 288 | |||
| 289 | |||
| 290 | |||
| 291 | |||
| 292 | template< typename ModelT, | ||
| 293 | bool WITH_FIXED_TERMS = ModelT::WITH_FIXED_TERMS > | ||
| 294 | class lsf_with_fixed_terms | ||
| 295 | { | ||
| 296 | }; | ||
| 297 | |||
| 298 | |||
| 299 | // fitting tool for completely unknown models | ||
| 300 | template< typename ModelT> | ||
| 301 | class lsf_with_fixed_terms<ModelT, false> | ||
| 302 | : public lsf_solution<ModelT> | ||
| 303 | { | ||
| 304 | public: | ||
| 305 | typedef ModelT model_type; | ||
| 306 | typedef typename model_type::parameter_type parameter_type; | ||
| 307 | typedef typename model_type::value_type value_type; | ||
| 308 | typedef lsf_solution<model_type> base_type; | ||
| 309 | typedef typename base_type::solution_type solution_type; | ||
| 310 | |||
| 311 | using base_type::total_samples; | ||
| 312 | using base_type::is_full; | ||
| 313 | using base_type::m_matrix; | ||
| 314 | using base_type::m_total_samples; | ||
| 315 | using base_type::m_model; | ||
| 316 | |||
| 317 | public: | ||
| 318 | lsf_with_fixed_terms(model_type const &_model, | ||
| 319 | size_t forecasted_samples) | ||
| 320 | : base_type(_model, forecasted_samples) | ||
| 321 | {} | ||
| 322 | |||
| 323 | void append(parameter_type const& sample_parameter) | ||
| 324 | { | ||
| 325 | assert(!is_full()); | ||
| 326 | VectorView row = m_matrix.row_view(total_samples()); | ||
| 327 | m_model.feed(row, sample_parameter); | ||
| 328 | ++m_total_samples; | ||
| 329 | } | ||
| 330 | |||
| 331 | void append_copy(size_t sample_index) | ||
| 332 | { | ||
| 333 | assert(!is_full()); | ||
| 334 | assert(sample_index < total_samples()); | ||
| 335 | VectorView dest_row = m_matrix.row_view(total_samples()); | ||
| 336 | VectorView source_row = m_matrix.row_view(sample_index); | ||
| 337 | dest_row = source_row; | ||
| 338 | ++m_total_samples; | ||
| 339 | } | ||
| 340 | |||
| 341 | }; // end class lsf_with_fixed_terms<ModelT, false> | ||
| 342 | |||
| 343 | |||
| 344 | // fitting tool for partially known models | ||
| 345 | template< typename ModelT> | ||
| 346 | class lsf_with_fixed_terms<ModelT, true> | ||
| 347 | : public lsf_solution<ModelT> | ||
| 348 | { | ||
| 349 | public: | ||
| 350 | typedef ModelT model_type; | ||
| 351 | typedef typename model_type::parameter_type parameter_type; | ||
| 352 | typedef typename model_type::value_type value_type; | ||
| 353 | typedef lsf_solution<model_type> base_type; | ||
| 354 | typedef typename base_type::solution_type solution_type; | ||
| 355 | |||
| 356 | using base_type::total_samples; | ||
| 357 | using base_type::is_full; | ||
| 358 | using base_type::m_matrix; | ||
| 359 | using base_type::m_total_samples; | ||
| 360 | using base_type::m_model; | ||
| 361 | |||
| 362 | public: | ||
| 363 | ✗ | lsf_with_fixed_terms(model_type const &_model, | |
| 364 | size_t forecasted_samples) | ||
| 365 | : base_type(_model, forecasted_samples) | ||
| 366 | ✗ | , m_vector(forecasted_samples) | |
| 367 | ✗ | , m_vector_view(nullptr) | |
| 368 | ✗ | {} | |
| 369 | |||
| 370 | ✗ | void append(parameter_type const& sample_parameter) | |
| 371 | { | ||
| 372 | ✗ | assert(!is_full()); | |
| 373 | ✗ | VectorView row = m_matrix.row_view(total_samples()); | |
| 374 | ✗ | m_model.feed(row, m_vector[total_samples()], sample_parameter); | |
| 375 | ✗ | ++m_total_samples; | |
| 376 | ✗ | } | |
| 377 | |||
| 378 | void append_copy(size_t sample_index) | ||
| 379 | { | ||
| 380 | assert(!is_full()); | ||
| 381 | assert(sample_index < total_samples()); | ||
| 382 | VectorView dest_row = m_matrix.row_view(total_samples()); | ||
| 383 | VectorView source_row = m_matrix.row_view(sample_index); | ||
| 384 | dest_row = source_row; | ||
| 385 | m_vector[total_samples()] = m_vector[sample_index]; | ||
| 386 | ++m_total_samples; | ||
| 387 | } | ||
| 388 | |||
| 389 | ✗ | void update() | |
| 390 | { | ||
| 391 | ✗ | base_type::update(); | |
| 392 | ✗ | if (total_samples() == 0) return; | |
| 393 | ✗ | if (m_vector_view != NULL) | |
| 394 | { | ||
| 395 | ✗ | delete m_vector_view; | |
| 396 | } | ||
| 397 | ✗ | m_vector_view = new VectorView(m_vector, base_type::total_samples()); | |
| 398 | ✗ | assert(m_vector_view != NULL); | |
| 399 | } | ||
| 400 | |||
| 401 | |||
| 402 | ✗ | ~lsf_with_fixed_terms() override | |
| 403 | { | ||
| 404 | ✗ | if (m_vector_view) { | |
| 405 | ✗ | delete m_vector_view; | |
| 406 | } | ||
| 407 | ✗ | } | |
| 408 | |||
| 409 | protected: | ||
| 410 | Vector m_vector; | ||
| 411 | VectorView* m_vector_view; | ||
| 412 | }; | ||
| 413 | |||
| 414 | |||
| 415 | } // end namespace detail | ||
| 416 | |||
| 417 | |||
| 418 | |||
| 419 | |||
| 420 | template< typename ModelT, | ||
| 421 | typename ValueType = typename ModelT::value_type, | ||
| 422 | bool WITH_FIXED_TERMS = ModelT::WITH_FIXED_TERMS > | ||
| 423 | class least_squeares_fitter | ||
| 424 | { | ||
| 425 | }; | ||
| 426 | |||
| 427 | |||
| 428 | template< typename ModelT, typename ValueType > | ||
| 429 | class least_squeares_fitter<ModelT, ValueType, false> | ||
| 430 | : public detail::lsf_with_fixed_terms<ModelT> | ||
| 431 | { | ||
| 432 | public: | ||
| 433 | typedef ModelT model_type; | ||
| 434 | typedef detail::lsf_with_fixed_terms<model_type> base_type; | ||
| 435 | typedef typename base_type::parameter_type parameter_type; | ||
| 436 | typedef typename base_type::value_type value_type; | ||
| 437 | typedef typename base_type::solution_type solution_type; | ||
| 438 | |||
| 439 | public: | ||
| 440 | least_squeares_fitter(model_type const &_model, | ||
| 441 | size_t forecasted_samples) | ||
| 442 | : base_type(_model, forecasted_samples) | ||
| 443 | {} | ||
| 444 | }; | ||
| 445 | |||
| 446 | template< typename ModelT> | ||
| 447 | class least_squeares_fitter<ModelT, double, true> | ||
| 448 | : public detail::lsf_with_fixed_terms<ModelT> | ||
| 449 | { | ||
| 450 | public: | ||
| 451 | typedef ModelT model_type; | ||
| 452 | typedef detail::lsf_with_fixed_terms<model_type> base_type; | ||
| 453 | typedef typename base_type::parameter_type parameter_type; | ||
| 454 | typedef typename base_type::value_type value_type; | ||
| 455 | typedef typename base_type::solution_type solution_type; | ||
| 456 | |||
| 457 | using base_type::m_vector_view; | ||
| 458 | //using base_type::result; // VSC legacy support | ||
| 459 | solution_type& result( std::vector<Point> const& old_sample_values, | ||
| 460 | std::vector<Point> const& new_sample_values ) | ||
| 461 | { | ||
| 462 | return base_type::result(old_sample_values, new_sample_values); | ||
| 463 | } | ||
| 464 | |||
| 465 | ✗ | solution_type& result() | |
| 466 | { | ||
| 467 | ✗ | return base_type::result(); | |
| 468 | } | ||
| 469 | |||
| 470 | public: | ||
| 471 | ✗ | least_squeares_fitter(model_type const &_model, | |
| 472 | size_t forecasted_samples) | ||
| 473 | ✗ | : base_type(_model, forecasted_samples) | |
| 474 | ✗ | {} | |
| 475 | |||
| 476 | template< typename VectorT > | ||
| 477 | ✗ | solution_type& result(VectorT const& sample_values) | |
| 478 | { | ||
| 479 | ✗ | assert(sample_values.size() == m_vector_view->size()); | |
| 480 | ✗ | Vector sv(sample_values.size()); | |
| 481 | ✗ | for (size_t i = 0; i < sv.size(); ++i) | |
| 482 | ✗ | sv[i] = sample_values[i] - (*m_vector_view)[i]; | |
| 483 | ✗ | return base_type::result(sv); | |
| 484 | ✗ | } | |
| 485 | |||
| 486 | }; // end class least_squeares_fitter<ModelT, double, true> | ||
| 487 | |||
| 488 | |||
| 489 | template< typename ModelT> | ||
| 490 | class least_squeares_fitter<ModelT, Point, true> | ||
| 491 | : public detail::lsf_with_fixed_terms<ModelT> | ||
| 492 | { | ||
| 493 | public: | ||
| 494 | typedef ModelT model_type; | ||
| 495 | typedef detail::lsf_with_fixed_terms<model_type> base_type; | ||
| 496 | typedef typename base_type::parameter_type parameter_type; | ||
| 497 | typedef typename base_type::value_type value_type; | ||
| 498 | typedef typename base_type::solution_type solution_type; | ||
| 499 | |||
| 500 | using base_type::m_vector_view; | ||
| 501 | //using base_type::result; // VCS legacy support | ||
| 502 | solution_type& result( std::vector<Point> const& old_sample_values, | ||
| 503 | std::vector<Point> const& new_sample_values ) | ||
| 504 | { | ||
| 505 | return base_type::result(old_sample_values, new_sample_values); | ||
| 506 | } | ||
| 507 | |||
| 508 | solution_type& result() | ||
| 509 | { | ||
| 510 | return base_type::result(); | ||
| 511 | } | ||
| 512 | |||
| 513 | |||
| 514 | public: | ||
| 515 | least_squeares_fitter(model_type const &_model, | ||
| 516 | size_t forecasted_samples) | ||
| 517 | : base_type(_model, forecasted_samples) | ||
| 518 | {} | ||
| 519 | |||
| 520 | solution_type& result(std::vector<Point> const& sample_values) | ||
| 521 | { | ||
| 522 | assert(sample_values.size() == m_vector_view->size()); | ||
| 523 | NL::Matrix sv(sample_values.size(), 2); | ||
| 524 | for (size_t i = 0; i < sample_values.size(); ++i) | ||
| 525 | { | ||
| 526 | sv(i, X) = sample_values[i][X] - (*m_vector_view)[i]; | ||
| 527 | sv(i, Y) = sample_values[i][Y] - (*m_vector_view)[i]; | ||
| 528 | } | ||
| 529 | return base_type::result(sv); | ||
| 530 | } | ||
| 531 | |||
| 532 | }; // end class least_squeares_fitter<ModelT, Point, true> | ||
| 533 | |||
| 534 | |||
| 535 | } // end namespace NL | ||
| 536 | } // end namespace Geom | ||
| 537 | |||
| 538 | |||
| 539 | |||
| 540 | #endif // _NL_FITTING_TOOL_H_ | ||
| 541 | |||
| 542 | |||
| 543 | /* | ||
| 544 | Local Variables: | ||
| 545 | mode:c++ | ||
| 546 | c-file-style:"stroustrup" | ||
| 547 | c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) | ||
| 548 | indent-tabs-mode:nil | ||
| 549 | fill-column:99 | ||
| 550 | End: | ||
| 551 | */ | ||
| 552 | // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : | ||
| 553 |