| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /** @file | ||
| 2 | * @brief Conic Section | ||
| 3 | *//* | ||
| 4 | * Authors: | ||
| 5 | * Nathan Hurst <njh@njhurst.com> | ||
| 6 | * | ||
| 7 | * Copyright 2009 authors | ||
| 8 | * | ||
| 9 | * This library is free software; you can redistribute it and/or | ||
| 10 | * modify it either under the terms of the GNU Lesser General Public | ||
| 11 | * License version 2.1 as published by the Free Software Foundation | ||
| 12 | * (the "LGPL") or, at your option, under the terms of the Mozilla | ||
| 13 | * Public License Version 1.1 (the "MPL"). If you do not alter this | ||
| 14 | * notice, a recipient may use your version of this file under either | ||
| 15 | * the MPL or the LGPL. | ||
| 16 | * | ||
| 17 | * You should have received a copy of the LGPL along with this library | ||
| 18 | * in the file COPYING-LGPL-2.1; if not, write to the Free Software | ||
| 19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
| 20 | * You should have received a copy of the MPL along with this library | ||
| 21 | * in the file COPYING-MPL-1.1 | ||
| 22 | * | ||
| 23 | * The contents of this file are subject to the Mozilla Public License | ||
| 24 | * Version 1.1 (the "License"); you may not use this file except in | ||
| 25 | * compliance with the License. You may obtain a copy of the License at | ||
| 26 | * http://www.mozilla.org/MPL/ | ||
| 27 | * | ||
| 28 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY | ||
| 29 | * OF ANY KIND, either express or implied. See the LGPL or the MPL for | ||
| 30 | * the specific language governing rights and limitations. | ||
| 31 | */ | ||
| 32 | |||
| 33 | |||
| 34 | #ifndef LIB2GEOM_SEEN_CONICSEC_H | ||
| 35 | #define LIB2GEOM_SEEN_CONICSEC_H | ||
| 36 | |||
| 37 | #include <2geom/exception.h> | ||
| 38 | #include <2geom/angle.h> | ||
| 39 | #include <2geom/rect.h> | ||
| 40 | #include <2geom/affine.h> | ||
| 41 | #include <2geom/point.h> | ||
| 42 | #include <2geom/line.h> | ||
| 43 | #include <2geom/bezier-curve.h> | ||
| 44 | #include <2geom/numeric/linear_system.h> | ||
| 45 | #include <2geom/numeric/symmetric-matrix-fs.h> | ||
| 46 | #include <2geom/numeric/symmetric-matrix-fs-operation.h> | ||
| 47 | |||
| 48 | #include <optional> | ||
| 49 | |||
| 50 | #include <string> | ||
| 51 | #include <vector> | ||
| 52 | #include <ostream> | ||
| 53 | |||
| 54 | |||
| 55 | |||
| 56 | |||
| 57 | namespace Geom | ||
| 58 | { | ||
| 59 | |||
| 60 | class RatQuad{ | ||
| 61 | /** | ||
| 62 | * A curve of the form B02*A + B12*B*w + B22*C/(B02 + B12*w + B22) | ||
| 63 | * These curves can exactly represent a piece conic section less than a certain angle (find out) | ||
| 64 | * | ||
| 65 | **/ | ||
| 66 | |||
| 67 | public: | ||
| 68 | Point P[3]; | ||
| 69 | double w; | ||
| 70 | ✗ | RatQuad() {} | |
| 71 | ✗ | RatQuad(Point a, Point b, Point c, double w) : w(w) { | |
| 72 | ✗ | P[0] = a; | |
| 73 | ✗ | P[1] = b; | |
| 74 | ✗ | P[2] = c; | |
| 75 | ✗ | } | |
| 76 | double lambda() const; | ||
| 77 | |||
| 78 | static RatQuad fromPointsTangents(Point P0, Point dP0, | ||
| 79 | Point P, | ||
| 80 | Point P2, Point dP2); | ||
| 81 | static RatQuad circularArc(Point P0, Point P1, Point P2); | ||
| 82 | |||
| 83 | CubicBezier toCubic() const; | ||
| 84 | CubicBezier toCubic(double lam) const; | ||
| 85 | |||
| 86 | Point pointAt(double t) const; | ||
| 87 | ✗ | Point at0() const {return P[0];} | |
| 88 | ✗ | Point at1() const {return P[2];} | |
| 89 | |||
| 90 | void split(RatQuad &a, RatQuad &b) const; | ||
| 91 | |||
| 92 | D2<SBasis> hermite() const; | ||
| 93 | std::vector<SBasis> homogeneous() const; | ||
| 94 | }; | ||
| 95 | |||
| 96 | |||
| 97 | |||
| 98 | |||
| 99 | class xAx{ | ||
| 100 | public: | ||
| 101 | double c[6]; | ||
| 102 | |||
| 103 | enum kind_t | ||
| 104 | { | ||
| 105 | PARABOLA, | ||
| 106 | CIRCLE, | ||
| 107 | REAL_ELLIPSE, | ||
| 108 | IMAGINARY_ELLIPSE, | ||
| 109 | RECTANGULAR_HYPERBOLA, | ||
| 110 | HYPERBOLA, | ||
| 111 | DOUBLE_LINE, | ||
| 112 | TWO_REAL_PARALLEL_LINES, | ||
| 113 | TWO_IMAGINARY_PARALLEL_LINES, | ||
| 114 | TWO_REAL_CROSSING_LINES, | ||
| 115 | TWO_IMAGINARY_CROSSING_LINES, // crossing at a real point | ||
| 116 | SINGLE_POINT = TWO_IMAGINARY_CROSSING_LINES, | ||
| 117 | UNKNOWN | ||
| 118 | }; | ||
| 119 | |||
| 120 | |||
| 121 | ✗ | xAx() {} | |
| 122 | |||
| 123 | /* | ||
| 124 | * Define the conic section by its algebraic equation coefficients | ||
| 125 | * | ||
| 126 | * c0, .., c5: equation coefficients | ||
| 127 | */ | ||
| 128 | 13 | xAx (double c0, double c1, double c2, double c3, double c4, double c5) | |
| 129 | 13 | { | |
| 130 | 13 | set (c0, c1, c2, c3, c4, c5); | |
| 131 | 13 | } | |
| 132 | |||
| 133 | /* | ||
| 134 | * Define a conic section by its related symmetric matrix | ||
| 135 | */ | ||
| 136 | xAx (const NL::ConstSymmetricMatrixView<3> & C) | ||
| 137 | { | ||
| 138 | set(C); | ||
| 139 | } | ||
| 140 | |||
| 141 | /* | ||
| 142 | * Define a conic section by computing the one that fits better with | ||
| 143 | * N points. | ||
| 144 | * | ||
| 145 | * points: points to fit | ||
| 146 | * | ||
| 147 | * precondition: there must be at least 5 non-overlapping points | ||
| 148 | */ | ||
| 149 | xAx (std::vector<Point> const& points) | ||
| 150 | { | ||
| 151 | set (points); | ||
| 152 | } | ||
| 153 | |||
| 154 | /* | ||
| 155 | * Define a section conic by providing the coordinates of one of its | ||
| 156 | * vertex,the major axis inclination angle and the coordinates of its foci | ||
| 157 | * with respect to the unidimensional system defined by the major axis with | ||
| 158 | * origin set at the provided vertex. | ||
| 159 | * | ||
| 160 | * _vertex : section conic vertex V | ||
| 161 | * _angle : section conic major axis angle | ||
| 162 | * _dist1: +/-distance btw V and nearest focus | ||
| 163 | * _dist2: +/-distance btw V and farest focus | ||
| 164 | * | ||
| 165 | * prerequisite: _dist1 <= _dist2 | ||
| 166 | */ | ||
| 167 | xAx (const Point& _vertex, double _angle, double _dist1, double _dist2) | ||
| 168 | { | ||
| 169 | set (_vertex, _angle, _dist1, _dist2); | ||
| 170 | } | ||
| 171 | |||
| 172 | /* | ||
| 173 | * Define a conic section by providing one of its vertex and its foci. | ||
| 174 | * | ||
| 175 | * _vertex: section conic vertex | ||
| 176 | * _focus1: section conic focus | ||
| 177 | * _focus2: section conic focus | ||
| 178 | */ | ||
| 179 | xAx (const Point& _vertex, const Point& _focus1, const Point& _focus2) | ||
| 180 | { | ||
| 181 | set(_vertex, _focus1, _focus2); | ||
| 182 | } | ||
| 183 | |||
| 184 | /* | ||
| 185 | * Define a conic section by passing a focus, the related directrix, | ||
| 186 | * and the eccentricity (e) | ||
| 187 | * (e < 1 -> ellipse; e = 1 -> parabola; e > 1 -> hyperbola) | ||
| 188 | * | ||
| 189 | * _focus: a focus of the conic section | ||
| 190 | * _directrix: the directrix related to the given focus | ||
| 191 | * _eccentricity: the eccentricity parameter of the conic section | ||
| 192 | */ | ||
| 193 | xAx (const Point & _focus, const Line & _directrix, double _eccentricity) | ||
| 194 | { | ||
| 195 | set (_focus, _directrix, _eccentricity); | ||
| 196 | } | ||
| 197 | |||
| 198 | /* | ||
| 199 | * Made up a degenerate conic section as a pair of lines | ||
| 200 | * | ||
| 201 | * l1, l2: lines that made up the conic section | ||
| 202 | */ | ||
| 203 | xAx (const Line& l1, const Line& l2) | ||
| 204 | { | ||
| 205 | set (l1, l2); | ||
| 206 | } | ||
| 207 | |||
| 208 | /* | ||
| 209 | * Define the conic section by its algebraic equation coefficients | ||
| 210 | * c0, ..., c5: equation coefficients | ||
| 211 | */ | ||
| 212 | 13 | void set (double c0, double c1, double c2, double c3, double c4, double c5) | |
| 213 | { | ||
| 214 | 13 | c[0] = c0; c[1] = c1; c[2] = c2; // xx, xy, yy | |
| 215 | 13 | c[3] = c3; c[4] = c4; // x, y | |
| 216 | 13 | c[5] = c5; // 1 | |
| 217 | 13 | } | |
| 218 | |||
| 219 | /* | ||
| 220 | * Define a conic section by its related symmetric matrix | ||
| 221 | */ | ||
| 222 | void set (const NL::ConstSymmetricMatrixView<3> & C) | ||
| 223 | { | ||
| 224 | set(C(0,0), 2*C(1,0), C(1,1), 2*C(2,0), 2*C(2,1), C(2,2)); | ||
| 225 | } | ||
| 226 | |||
| 227 | void set (std::vector<Point> const& points); | ||
| 228 | |||
| 229 | void set (const Point& _vertex, double _angle, double _dist1, double _dist2); | ||
| 230 | |||
| 231 | void set (const Point& _vertex, const Point& _focus1, const Point& _focus2); | ||
| 232 | |||
| 233 | void set (const Point & _focus, const Line & _directrix, double _eccentricity); | ||
| 234 | |||
| 235 | void set (const Line& l1, const Line& l2); | ||
| 236 | |||
| 237 | |||
| 238 | static xAx fromPoint(Point p); | ||
| 239 | static xAx fromDistPoint(Point p, double d); | ||
| 240 | static xAx fromLine(Point n, double d); | ||
| 241 | static xAx fromLine(Line l); | ||
| 242 | static xAx fromPoints(std::vector<Point> const &pts); | ||
| 243 | |||
| 244 | |||
| 245 | template<typename T> | ||
| 246 | ✗ | T evaluate_at(T x, T y) const { | |
| 247 | ✗ | return c[0]*x*x + c[1]*x*y + c[2]*y*y + c[3]*x + c[4]*y + c[5]; | |
| 248 | } | ||
| 249 | |||
| 250 | double valueAt(Point P) const; | ||
| 251 | |||
| 252 | ✗ | std::vector<double> implicit_form_coefficients() const { | |
| 253 | ✗ | return std::vector<double>(c, c+6); | |
| 254 | } | ||
| 255 | |||
| 256 | template<typename T> | ||
| 257 | ✗ | T evaluate_at(T x, T y, T w) const { | |
| 258 | ✗ | return c[0]*x*x + c[1]*x*y + c[2]*y*y + c[3]*x*w + c[4]*y*w + c[5]*w*w; | |
| 259 | } | ||
| 260 | |||
| 261 | xAx scale(double sx, double sy) const; | ||
| 262 | |||
| 263 | Point gradient(Point p) const; | ||
| 264 | |||
| 265 | xAx operator-(xAx const &b) const; | ||
| 266 | xAx operator+(xAx const &b) const; | ||
| 267 | xAx operator+(double const &b) const; | ||
| 268 | xAx operator*(double const &b) const; | ||
| 269 | |||
| 270 | std::vector<Point> crossings(Rect r) const; | ||
| 271 | std::optional<RatQuad> toCurve(Rect const & bnd) const; | ||
| 272 | std::vector<double> roots(Point d, Point o) const; | ||
| 273 | |||
| 274 | std::vector<double> roots(Line const &l) const; | ||
| 275 | |||
| 276 | static Interval quad_ex(double a, double b, double c, Interval ivl); | ||
| 277 | |||
| 278 | Geom::Affine hessian() const; | ||
| 279 | |||
| 280 | std::optional<Point> bottom() const; | ||
| 281 | |||
| 282 | Interval extrema(Rect r) const; | ||
| 283 | |||
| 284 | |||
| 285 | /* | ||
| 286 | * Return the symmetric matrix related to the conic section. | ||
| 287 | * Modifying the matrix does not modify the conic section | ||
| 288 | */ | ||
| 289 | ✗ | NL::SymmetricMatrix<3> get_matrix() const | |
| 290 | { | ||
| 291 | ✗ | NL::SymmetricMatrix<3> C(c); | |
| 292 | ✗ | C(1,0) *= 0.5; C(2,0) *= 0.5; C(2,1) *= 0.5; | |
| 293 | ✗ | return C; | |
| 294 | ✗ | } | |
| 295 | |||
| 296 | /* | ||
| 297 | * Return the i-th coefficient of the conic section algebraic equation | ||
| 298 | * Modifying the returned value does not modify the conic section coefficient | ||
| 299 | */ | ||
| 300 | ✗ | double coeff (size_t i) const | |
| 301 | { | ||
| 302 | ✗ | return c[i]; | |
| 303 | } | ||
| 304 | |||
| 305 | /* | ||
| 306 | * Return the i-th coefficient of the conic section algebraic equation | ||
| 307 | * Modifying the returned value modifies the conic section coefficient | ||
| 308 | */ | ||
| 309 | ✗ | double& coeff (size_t i) | |
| 310 | { | ||
| 311 | ✗ | return c[i]; | |
| 312 | } | ||
| 313 | |||
| 314 | kind_t kind () const; | ||
| 315 | |||
| 316 | std::string categorise() const; | ||
| 317 | |||
| 318 | /* | ||
| 319 | * Return true if the equation: | ||
| 320 | * c0*x^2 + c1*xy + c2*y^2 + c3*x + c4*y +c5 == 0 | ||
| 321 | * really defines a conic, false otherwise | ||
| 322 | */ | ||
| 323 | ✗ | bool is_quadratic() const | |
| 324 | { | ||
| 325 | ✗ | return (coeff(0) != 0 || coeff(1) != 0 || coeff(2) != 0); | |
| 326 | } | ||
| 327 | |||
| 328 | /* | ||
| 329 | * Return true if the conic is degenerate, i.e. if the related matrix | ||
| 330 | * determinant is null, false otherwise | ||
| 331 | */ | ||
| 332 | ✗ | bool isDegenerate() const | |
| 333 | { | ||
| 334 | ✗ | return (det_sgn (get_matrix()) == 0); | |
| 335 | } | ||
| 336 | |||
| 337 | /* | ||
| 338 | * Compute the centre of symmetry of the conic section when it exists, | ||
| 339 | * else it return an uninitialized std::optional<Point> instance. | ||
| 340 | */ | ||
| 341 | ✗ | std::optional<Point> centre() const | |
| 342 | { | ||
| 343 | typedef std::optional<Point> opt_point_t; | ||
| 344 | |||
| 345 | ✗ | double d = coeff(1) * coeff(1) - 4 * coeff(0) * coeff(2); | |
| 346 | ✗ | if (are_near (d, 0)) return opt_point_t(); | |
| 347 | ✗ | NL::Matrix Q(2, 2); | |
| 348 | ✗ | Q(0,0) = coeff(0); | |
| 349 | ✗ | Q(1,1) = coeff(2); | |
| 350 | ✗ | Q(0,1) = Q(1,0) = coeff(1) * 0.5; | |
| 351 | ✗ | NL::Vector T(2); | |
| 352 | ✗ | T[0] = - coeff(3) * 0.5; | |
| 353 | ✗ | T[1] = - coeff(4) * 0.5; | |
| 354 | |||
| 355 | ✗ | NL::LinearSystem ls (Q, T); | |
| 356 | ✗ | NL::Vector sol = ls.SV_solve(); | |
| 357 | ✗ | Point C; | |
| 358 | ✗ | C[0] = sol[0]; | |
| 359 | ✗ | C[1] = sol[1]; | |
| 360 | |||
| 361 | ✗ | return opt_point_t(C); | |
| 362 | ✗ | } | |
| 363 | |||
| 364 | double axis_angle() const; | ||
| 365 | |||
| 366 | void roots (std::vector<double>& sol, Coord v, Dim2 d) const; | ||
| 367 | |||
| 368 | xAx translate (const Point & _offset) const; | ||
| 369 | |||
| 370 | xAx rotate (double angle) const; | ||
| 371 | |||
| 372 | /* | ||
| 373 | * Rotate the conic section by the given angle wrt the provided point. | ||
| 374 | * | ||
| 375 | * _rot_centre: the rotation centre | ||
| 376 | * _angle: the rotation angle | ||
| 377 | */ | ||
| 378 | xAx rotate (const Point & _rot_centre, double _angle) const | ||
| 379 | { | ||
| 380 | xAx result | ||
| 381 | = translate (-_rot_centre).rotate (_angle).translate (_rot_centre); | ||
| 382 | return result; | ||
| 383 | } | ||
| 384 | |||
| 385 | /* | ||
| 386 | * Compute the tangent line of the conic section at the provided point | ||
| 387 | * | ||
| 388 | * _point: the conic section point the tangent line pass through | ||
| 389 | */ | ||
| 390 | ✗ | Line tangent (const Point & _point) const | |
| 391 | { | ||
| 392 | ✗ | NL::Vector pp(3); | |
| 393 | ✗ | pp[0] = _point[0]; pp[1] = _point[1]; pp[2] = 1; | |
| 394 | ✗ | NL::SymmetricMatrix<3> C = get_matrix(); | |
| 395 | ✗ | NL::Vector line = C * pp; | |
| 396 | ✗ | return Line(line[0], line[1], line[2]); | |
| 397 | ✗ | } | |
| 398 | |||
| 399 | /* | ||
| 400 | * For a non degenerate conic compute the dual conic. | ||
| 401 | * TODO: investigate degenerate case | ||
| 402 | */ | ||
| 403 | xAx dual () const | ||
| 404 | { | ||
| 405 | //assert (! isDegenerate()); | ||
| 406 | NL::SymmetricMatrix<3> C = get_matrix(); | ||
| 407 | NL::SymmetricMatrix<3> D = adj(C); | ||
| 408 | xAx dc(D); | ||
| 409 | return dc; | ||
| 410 | } | ||
| 411 | |||
| 412 | bool decompose (Line& l1, Line& l2) const; | ||
| 413 | |||
| 414 | /** | ||
| 415 | * @brief Division-free decomposition of a degenerate conic section, without | ||
| 416 | * degeneration test. | ||
| 417 | * | ||
| 418 | * When the conic is degenerate, it consists of 0, 1 or 2 lines in the xy-plane. | ||
| 419 | * This function returns these lines. But it does not check whether the conic | ||
| 420 | * is really degenerate, so calling it on a non-degenerate conic produces a | ||
| 421 | * meaningless result. | ||
| 422 | * | ||
| 423 | * If the number of lines is less than two, the trailing lines in the returned | ||
| 424 | * array will be degenerate. Use Line::isDegenerate() to test for that. | ||
| 425 | * | ||
| 426 | * This version of the decomposition is division-free, which improves numerical | ||
| 427 | * stability compared to decompose(). | ||
| 428 | * | ||
| 429 | * @param epsilon The numerical threshold for floating point comparison of discriminants. | ||
| 430 | */ | ||
| 431 | std::array<Line, 2> decompose_df(Coord epsilon = EPSILON) const; | ||
| 432 | |||
| 433 | /* | ||
| 434 | * Generate a RatQuad object from a conic arc. | ||
| 435 | * | ||
| 436 | * p0: the initial point of the arc | ||
| 437 | * p1: the inner point of the arc | ||
| 438 | * p2: the final point of the arc | ||
| 439 | */ | ||
| 440 | ✗ | RatQuad toRatQuad (const Point & p0, | |
| 441 | const Point & p1, | ||
| 442 | const Point & p2) const | ||
| 443 | { | ||
| 444 | ✗ | Point dp0 = gradient (p0); | |
| 445 | ✗ | Point dp2 = gradient (p2); | |
| 446 | return | ||
| 447 | ✗ | RatQuad::fromPointsTangents (p0, rot90 (dp0), p1, p2, rot90 (dp2)); | |
| 448 | } | ||
| 449 | |||
| 450 | /* | ||
| 451 | * Return the angle related to the normal gradient computed at the passed | ||
| 452 | * point. | ||
| 453 | * | ||
| 454 | * _point: the point at which computes the angle | ||
| 455 | * | ||
| 456 | * prerequisite: the passed point must lie on the conic | ||
| 457 | */ | ||
| 458 | ✗ | double angle_at (const Point & _point) const | |
| 459 | { | ||
| 460 | ✗ | double angle = atan2 (gradient (_point)); | |
| 461 | ✗ | if (angle < 0) angle += (2*M_PI); | |
| 462 | ✗ | return angle; | |
| 463 | } | ||
| 464 | |||
| 465 | /* | ||
| 466 | * Return true if the given point is contained in the conic arc determined | ||
| 467 | * by the passed points. | ||
| 468 | * | ||
| 469 | * _point: the point to be tested | ||
| 470 | * _initial: the initial point of the arc | ||
| 471 | * _inner: an inner point of the arc | ||
| 472 | * _final: the final point of the arc | ||
| 473 | * | ||
| 474 | * prerequisite: the passed points must lie on the conic, the inner point | ||
| 475 | * has to be strictly contained in the arc, except when the | ||
| 476 | * initial and final points are equal: in such a case if the | ||
| 477 | * inner point is also equal to them, then they define an arc | ||
| 478 | * made up by a single point. | ||
| 479 | * | ||
| 480 | */ | ||
| 481 | bool arc_contains (const Point & _point, const Point & _initial, | ||
| 482 | const Point & _inner, const Point & _final) const | ||
| 483 | { | ||
| 484 | AngleInterval ai(angle_at(_initial), angle_at(_inner), angle_at(_final)); | ||
| 485 | return ai.contains(angle_at(_point)); | ||
| 486 | } | ||
| 487 | |||
| 488 | Rect arc_bound (const Point & P1, const Point & Q, const Point & P2) const; | ||
| 489 | |||
| 490 | std::vector<Point> allNearestTimes (const Point &P) const; | ||
| 491 | |||
| 492 | /* | ||
| 493 | * Return the point on the conic section nearest to the passed point "P". | ||
| 494 | * | ||
| 495 | * P: the point to compute the nearest one | ||
| 496 | */ | ||
| 497 | Point nearestTime (const Point &P) const | ||
| 498 | { | ||
| 499 | std::vector<Point> points = allNearestTimes (P); | ||
| 500 | if ( !points.empty() ) | ||
| 501 | { | ||
| 502 | return points.front(); | ||
| 503 | } | ||
| 504 | // else | ||
| 505 | THROW_LOGICALERROR ("nearestTime: no nearest point found"); | ||
| 506 | return Point(); | ||
| 507 | } | ||
| 508 | |||
| 509 | }; | ||
| 510 | |||
| 511 | std::vector<Point> intersect(const xAx & C1, const xAx & C2); | ||
| 512 | |||
| 513 | bool clip (std::vector<RatQuad> & rq, const xAx & cs, const Rect & R); | ||
| 514 | |||
| 515 | ✗ | inline std::ostream &operator<< (std::ostream &out_file, const xAx &x) { | |
| 516 | ✗ | for(double i : x.c) { | |
| 517 | ✗ | out_file << i << ", "; | |
| 518 | } | ||
| 519 | ✗ | return out_file; | |
| 520 | } | ||
| 521 | |||
| 522 | }; | ||
| 523 | |||
| 524 | |||
| 525 | #endif // LIB2GEOM_SEEN_CONICSEC_H | ||
| 526 | |||
| 527 | /* | ||
| 528 | Local Variables: | ||
| 529 | mode:c++ | ||
| 530 | c-file-style:"stroustrup" | ||
| 531 | c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) | ||
| 532 | indent-tabs-mode:nil | ||
| 533 | fill-column:99 | ||
| 534 | End: | ||
| 535 | */ | ||
| 536 | // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : | ||
| 537 | |||
| 538 |